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ABSTRACT

Feedbacks are widely considered to be the largest source of uncertainty in determining the sensitivity of
the climate system to increasing anthropogenic greenhouse gas concentrations, yet the ability to diagnose
them from observations has remained controversial. Here a simple model is used to demonstrate that any
nonfeedback source of top-of-atmosphere radiative flux variations can cause temperature variability, which
then results in a positive bias in diagnosed feedbacks. This effect is demonstrated with daily random flux
variations, as might be caused by stochastic fluctuations in low cloud cover. The daily noise in radiative flux
then causes interannual and decadal temperature variations in the model’s 50-m-deep swamp ocean. The
amount of bias in the feedbacks diagnosed from time-averaged model output depends upon the size of the
nonfeedback flux variability relative to the surface temperature variability, as well as the sign and magni-
tude of the specified (true) feedback. For model runs producing monthly shortwave flux anomaly and
temperature anomaly statistics similar to those measured by satellites, the diagnosed feedbacks have posi-
tive biases generally in the range of —0.3 to —0.8 W m~2 K™!. These results suggest that current observa-
tional diagnoses of cloud feedback—and possibly other feedbacks—could be significantly biased in the
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positive direction.

1. Introduction

Our understanding of how sensitive the climate sys-
tem is to radiative perturbations has been limited by
large uncertainties regarding how clouds and other el-
ements of the climate system feed back on surface tem-
perature change (e.g., Webster and Stephens 1984; Cess
et al. 1990; Senior and Mitchell 1993; Stephens 2005;
Soden and Held 2006; Spencer et al. 2007). Feedbacks
are usually estimated by regressing time- and area-
averaged top-of-atmosphere (TOA) solar shortwave
(SW) or thermally emitted infrared longwave (LW) ra-
diative flux changes against surface temperature (7°)
changes. The regression slope of the resulting relation-
ship provides the diagnosed feedback in W m ™2 K.

A formalism to estimate feedback parameters (Y)
from nonequilibrium climate states was presented by
Forster and Gregory (2006, hereafter FG), whose gen-
eralized treatment included both internal and external
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sources of variability in TOA radiative fluxes. Here we
are interested in one of FG’s stated assumptions re-
garding the possible contamination of diagnosed feed-
backs by internal sources of variability (“X” terms) in
the TOA flux that are not the result of feedback on 7.
Specifically, FG state, “The X terms are likely to con-
taminate the result for short datasets, but provided the X
terms are uncorrelated to (surface temperature), the re-
gression should give the correct value for Y, if the dataset
is long enough.”

While it is true that the processes that cause the X
terms are, by FG’s definition, uncorrelated to 7, the
response of T to those forcings cannot be uncorrelated
to T—for the simple reason that it is radiative forcing
that causes changes in 7. Previous investigators who
have estimated feedbacks from observed climate vari-
ability have made similar assumptions, whether explic-
itly stated or not.

Here we address the following question: To what de-
gree could nonfeedback sources of radiative flux vari-
ability contaminate feedback estimates? Such flux
variations could, for example, be related to low-
frequency changes in atmospheric circulation patterns
such as the Pacific Decadal Oscillation (PDO; e.g.,
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Mantua et al. 1997) or North Atlantic Oscillation
(NAO; e.g., Hurrell 1995) influencing cloud or precipi-
tation efficiency; or high-frequency stochastic varia-
tions in cloud cover (e.g., Battisti et al. 1997) and sur-
face heat fluxes (Hasselman 1976). While such flux
variations would likely be generated on local and re-
gional scales, for simplicity we will address only their
net effect on the entire climate “system” represented by
a simple model.

2. Model description

To explore this issue, we used a very simple time-
dependent model of temperature deviations away from
an equilibrium state:

aT
C, Y F+S, 1)
where C, is the heat capacity of the system (here as-
sumed to be ocean only), T is the temperature, and ¢ is
time. The terms on the right-hand side represent heat-
ing deviations away from their equilibrium values, with
F being the total TOA radiative flux anomaly and S
representing heating anomalies not related to TOA
flux, for example, heat exchange with the deep ocean
such as during El Nifio or La Nifia events. We have
avoided the added complexity of a model atmosphere
in the model so that the basic error mechanism can be
illustrated.

We next separate F into three components: a total
feedback term —aT dependent on temperature, a
known forcing term f (e.g., anthropogenic radiative
forcing), and an unknown nonfeedback radiative
source term N. Using these terms in (1) gives

Cp%:—aT+N+f+S. 2
While we will use the example of daily random fluctua-
tions in N, such as those one might expect from sto-
chastic variations in low cloud cover affecting SW, the
more general case could involve any nonfeedback
source of SW or LW variability, and on any time scale.
Such stochastic variability would likely be generated on
mesoscales or synoptic scales, but here we are address-
ing only the net effect of these variations on the total
“system” represented by Eq. (2).

Our primary interest is in the estimation of the feed-
back parameter a from time-averaged model output.
We first address the simple case where N = 0, so that
temperature variations are driven only by S. (Hereaf-
ter, we will assume fis either zero or known a priori and
removed.) In this case, regression of the TOA flux
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against temperature amounts to regression of —aT
against 7. The resulting regression slope will always
yield a correct estimate (') of the feedback parameter.

Now consider the case where N # 0, as in our as-
sumed case of daily random variations in radiative flux.
In this case, regression of F against 7T gives for the
estimate of «

> (~aT+NT
>

where the summations are over time. Collecting terms
results in

’

o' = —slope =

3)

, S NT
o =a—ET2 S

which is an exact expression for the difference between
the true and diagnosed feedbacks. It is apparent from
Eq. (4) that one gets a biased estimate for « to the
degree that the summation of N7 is nonzero. Note that
while § does not explicitly appear in the error term, it
does influence it by affecting the correlation of N and T.

To estimate the magnitude of these biases, we ran a
zero-dimensional, finite-difference version of the
model represented by Eq. (2) at daily time resolution in
a series of case studies with a wide variety of assumed
magnitudes for « and N, and for a constant S (discussed
further below). Gaussian distributed daily noise with
zero mean was used as the forcing for both § and N,
where the noise level was varied for N but kept con-
stant for S. Each case was run with a heat capacity
equivalent to a 50-m-thick ocean mixed layer for 100 yr.
Daily data were collected from each run, 31-day aver-
ages computed, and the feedback parameter a esti-
mated by linear regression of average T against average
F (= —aT + N).

We also noted which combinations of « and N pro-
duced 31-day average model output that approximated
variations in the sea surface temperature and reflected
TOA SW flux measured by satellite. For reflected SW
variability, we computed the standard deviation of 30-
day average anomalies in the National Aeronautics and
Space Administration’s (NASA) Terra satellite Clouds
and the Earth’s Radiant Energy System (CERES;
Wielicki et al. 1996) reflected SW fluxes. For tempera-
ture variability we used Tropical Rain Measuring Mis-
sion (TRMM) satellite Microwave Imager (TMI; Kum-
merow et al. 1998) measurements of sea surface tem-
peratures (Wentz et al. 2000). These measures of
variability were computed for the tropical oceans in the
latitude band 20°N-20°S, during the period March 2000
through December 2005. Averaging the satellite data to

)



5626

monthly time resolution greatly reduces the sampling
errors that arise from incomplete coverage of the trop-
ics by the satellites on short time scales. The resulting
standard deviation of the satellite-observed 30-day-
averaged SW fluxes was 1.3 W m ™2, and of the T varia-
tions was 0.134°C.

3. Model experiment results

a. Example model run

To illustrate an example of the model output, we ran
the model with daily radiative flux noise N sufficient to
produce a 30-day standard deviation close to the satel-
lite-observed value of 1.30 W m ™2 for SW variability,
with a daily random nonradiative ocean heat input S
sufficient to result in a monthly standard deviation
close to the satellite-observed value of 0.134°C, and
with a specified feedback parameter a = 3.5 W m 2
K~!. It is important to understand that the feedback
parameter includes both the infrared Planck response
component of 3.3 W m~2 K~! (Forster and Taylor
2006) and any positive or negative feedbacks associated
with clouds, water vapor, lapse rate, etc. Thus, feedback
parameter values greater than 3.3 W m 2 K™! corre-
spond to negative feedback, while values less than 3.3
correspond to positive feedback. In our example, the
difference between these two numbers (3.5 Wm > K ™!
minus the 3.3 W m~? K~! Planck response) represents
a small, negative feedback component of 0.2 W m™2.

The first 30 yr of the model output temperature time
series (Fig. 1a) shows substantial interannual and de-
cadal temperature variability. This is the result of the
daily stochastic “cloud”-induced radiative inputs into
the model’s 50-m ocean mixed layer being accumulated
over time (Hasselman 1976). Depending upon the ran-
dom number generator seed, the time series seen in Fig.
la can change considerably.

When we average the model output to 31 days, and
regress 80 yr of these averages of (—aT + N) against T
(Fig. 1b), we obtain a regression slope of 2.94 W m™~?
K. Since this is less than the specified feedback pa-
rameter value of 3.5 W m~2 K™, the interpretation of
this metric as a feedback parameter results in a bias of
—0.56 W m~2 K. This effectively makes our specified
negative feedback of 0.2 W m~2 K~! look like a positive
feedback of —0.34 W m~2? K. It should be noted that
one can also use Eq. (4) to compute the same error
value exactly.

Also note that there is considerable scatter in the
relationship seen in Fig. 1b, with a relatively low ex-
plained variance of 13.5%. It might be significant that
the feedback diagnoses of FG based upon satellite ob-
servations also had low explained variances, averaging
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FI1G. 1. (a) Model output of daily ocean mixed layer temperature
variations away from equilibrium when forced with daily random
variations in heat input, and (b) the resulting relationship between
31-day averages in temperature and TOA radiative flux anomalies
(F in our model).

15% across all of their SW feedback estimates. In con-
trast, we found that if N is set to zero in the model runs
(not shown) the resulting explained variance is always
very high, over 95%. That is, when all radiative flux
variations are from feedback on surface temperature
variations, then those variations will always be highly
correlated with each other. This suggests that the low
explained variances in FG’s feedback diagnoses could
themselves be evidence for nonfeedback sources of
cloud variability.

b. Monte Carlo simulations of feedback diagnosis
errors

While our model is admittedly simple, it should allow
some semiquantitative insight into the sign and possible
magnitude of errors contained in observational esti-
mates of feedback. By making many model runs for
different combinations of the specified feedback pa-
rameter « and radiative flux noise N we can examine
the range of resulting feedback errors. We found it is
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Fi1G. 2. (a) Feedback relationships diagnosed from 100-yr model
runs in which various strengths of feedback («), nonfeedback
daily random radiative input (N), and a constant nonradiative
daily random ocean heat input (S) were specified. The dots rep-
resent model combinations that reproduce, to within 20%, the
standard deviation of 30-day tropical oceanic average SW and T
variations as observed in the tropical oceans by satellites during
2000 through 2005. (b) The same model output as a function of the
error in diagnosed feedback. Solid lines represent negative cloud
feedback (@ > 3.3 W m~2 K™'), while dashed lines represent
positive cloud feedback (a < 3.3 Wm™2 K™1).

the ratio N/S that largely governs the errors in feedback
estimates. Hence, S was kept fixed for all runs at a value
that produced monthly standard deviations in tempera-
ture near the satellite-observed value.

In Fig. 2a, we see how the diagnosed feedback de-
parts from the specified value as the amount of non-
feedback radiative flux noise is increased. The lines
represent constant values of specified feedback param-
eter, while any point on the lines corresponds to a di-
agnosed feedback. For instance, as one follows a line
from left to right (corresponding to an increase in the
radiative flux noise, N), the diagnosed feedback de-
parts from the true, specified feedback value on the
ordinate. The solid lines are for specified feedbacks
parameters greater than the infrared Planck response
value of 3.3 W m ™2 K™, thus indicating negative feed-
back, while the dashed lines represent specified feed-
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back parameters less than 3.3 W m > K™, indicating
positive feedback.

The dots plotted in Fig. 2a represent those cases
where the 31-day standard deviations of 7' and (—aT +
N) came within 20% of the satellite-observed values of
0.134°C and 1.3 W m 2, respectively. It can be seen by
the distribution of dots that the satellite-observed sta-
tistics are consistent with either a smaller daily radiative
noise fraction (N/S of 0.2 to 0.4) combined with nega-
tive feedback; or alternatively a relatively larger N/S
fraction (0.5 to over 1.0) combined with positive feed-
back.

The same data are also presented in Fig. 2b as a
function of the error in the regression-diagnosed feed-
back parameter, rather than the diagnosed feedback
parameter itself. This was produced by simply subtract-
ing the curves’ y intercepts in Fig. 2a from all data. We
can see from the plotted dots that the satellite obser-
vations are consistent with errors in diagnosed model
feedback from about —0.1 to —0.8 W m~? K~ '—albeit
corresponding to a wide range of positive to negative
feedbacks. We can further constrain the realistic range
by noting that the total (LW + SW) feedback param-
eters diagnosed from observational data by FG range
from 1.4 to 2.9 W m 2 K~!, which in Fig. 2b corre-
sponds to errors of —0.3 to —0.8 W m > K",

Our error estimates are, of course, dependent upon a
variety of model assumptions, possibly the most signif-
icant one being the ocean mixed layer depth. For heat
capacities corresponding to depths greater than 50 m,
somewhat smaller errors in feedback diagnosis are
found. Alternatively, any observational estimates of
feedback over land would correspond to smaller heat
capacities, and so greater errors in feedback diagnosis.
Also, since we used tropical oceanic satellite statistics
to constrain our model runs to realistic ranges, our es-
timated feedback errors are not necessarily applicable
to extratropical regions.

It is significant that all model errors for runs consis-
tent with satellite-observed variability are in the direc-
tion of positive feedback, raising the possibility that
current observational estimates of cloud feedback are
biased in the positive direction.

4. Conclusions and discussion

Forcing of our simple model with daily random, non-
feedback radiative flux variations suggests the possi-
bility of substantial positive biases in current observa-
tional estimates of feedback. When the outputs of
many model realizations are constrained by both satel-
lite-observed variability in tropical reflected SW and
SST, and FG’s observational estimates of diagnosed
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(LW+SW) feedback, we obtain positive cloud feed-
back biases in the range —0.3 to —0.8 Wm ™ 2 K. Since
these errors are based upon satellite measured variabil-
ity in tropical oceanic areas, they do not necessarily
apply to extratropical regions.

Nevertheless, since FG’s observational estimates of
total (SW+LW) feedback already represent a lower
climate sensitivity than that produced by any of the 20
coupled climate models analyzed by Forster and Taylor
(2006), our results suggest the possibility of an even
larger discrepancy between models and observations
than is currently realized.

What we have demonstrated is directly related to
Stephens’ (2005) emphasis on how we perceive the op-
eration of the climate system when diagnosing feed-
backs. Stephens noted the overly simplistic nature of
the system that is implicitly invoked when feedbacks
are diagnosed from the covariability between observed
radiative fluxes and surface temperature. Since it is well
known that the processes that control cloud formation
and dissipation are myriad, complex, and in general not
perfectly correlated with surface temperature varia-
tions (e.g., vertical temperature and water vapor pro-
files, horizontal temperature gradients), the existence
of nonfeedback sources of cloud variability should not
be unexpected.

While we have used here the example of daily ran-
dom variability in radiative fluxes which might be ex-
pected from the stochastic component of cloud behav-
ior, it should be noted that feedback estimates could
also be corrupted by other nonfeedback sources of vari-
ability on longer time scales, for example, from any
radiative effects resulting from a small change in the
general circulation of the ocean—-atmosphere system.

Our results hopefully provide some semiquantitative
insight into previously expressed concerns about the
validity of cloud feedbacks diagnosed from observa-
tional data. They also underscore the need for new
methods of diagnosing cloud feedback, as was advo-
cated by Stephens (2005), and one example of which is
the methodology developed by Aires and Rossow
(2003).
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