On the Diagnosis of Radiative Feedback in the Presence of Unknown Radiative Forcing

-or-

Connecting the Dots:
Theoretical & Observational Evidence for Negative Cloud Feedbacks

Roy W. Spencer
William D. Braswell
The University of Alabama in Huntsville

16 December 2009 AGU Meeting
San Francisco, CA
Radiative Flux vs. Temp. variations often show Strong Decorrelation…

WHAT AFFECTS THE REGRESSION SLOPE BESIDES FEEDBACK?

Radiative Flux Anomaly (W m\(^{-2}\))

Tropospheric T Anomaly (deg. C)

slope = 2.5 Wm\(^{-2}\)K\(^{-1}\)

\(r^2 = 0.22\)
…but PHASE SPACE plotting reveals linear striations with a common slope \(\sim 6 \text{ Wm}^{-2}\text{K}^{-1} \)

CONNECTING THE DOTS:
ARE LINEAR STRIATIONS FEEDBACK?
& low-pass filtering reveals Looping Patterns...

WHAT CAUSES LOOPING?

Radiative Flux Anomaly (W m\(^{-2}\))

Tropospheric T Anomaly (deg. C)

2007-08 cooling event

Monthly Running 3-Month Averages

slope 1.8
& older ERBS data shows similar looping pattern after 1991 Pinatubo eruption.

WHAT CAUSES LOOPING?

72-day “Seasons”, 60N-60S

Linear Patterns in Four IPCC AR4 Models (obvious in LW only)
Looping Patterns Seen in ALL 18 Models (especially in SW)

CNRM CM3 Model, SW
Linear & Looping Features Easily Explained with a Simple Model of Climate Variability:

(Spencer & Braswell, 2008 J. Climate [thanks to Isaac Held, pers. comm.])

\[C_p \frac{d\Delta T}{dt} = f(t) + N(t) + S(t) - \lambda \Delta T \]

- **CERES MEASURES ALL RADIATIVE SOURCES** (NOT just feedback)
- **EXTERNAL RADIATIVE FORCINGS** (anthro.; volcanoes; solar)
- **INTERNAL RADIATIVE FORCINGS** (non-FB variations in clouds, mostly)
- **INTERNAL NON-RADIATIVE FORCINGS** (vars. in ocean => atmos. convective heat flux; variations in ocean upwelling)
- **FEEDBACK on T chg.**

Bulk heat Capacity (mixed layer depth)
SIMPLE MODEL: Clouds => Temperature (N term) causes LOOPING PATTERNS…

Model parameters
15 m mixed layer;
$\lambda = 6 \text{ W m}^{-2} \text{ K}^{-1}$;
1 month time step;
forced with low-pass filtered random cloud variations (“N” term)
SIMPLE MODEL: Temperature => Clouds (S term) causes LINEAR STRIATIONS.

Model parameters
15 m mixed layer;
$\lambda = 6 \text{ W m}^{-2} \text{ K}^{-1}$;
1 month time step;
forced with low-pass filtered random temp. variations ("S" term e.g. chgs. in convective heat flux)
Most Realistic: BOTH Forcings Combined
(internal radiative forcing + non-rad. forcing)

Model parameters
15 m mixed layer;
λ = 6 W m\(^{-2}\) K\(^{-1}\);
1 month time step;
forced with low-pass filtered random cloud & T variations
(“N” & “S” terms)

LINEAR & LOOPING PATTERNS
So, How Can We Better Extract Feedback “Signal” when it is Mixed in with Internal Radiative “Noise”?

- No single best method
- My current favorite: Compute month-to-month slopes (e.g. $\Delta [LW+SW] / \Delta T$) for LARGEST ΔT’s & then average together (“Local Slopes Analysis”)
Local Slopes Analysis: CMIP Models vs. Satellite, evidence of neg. cloud feedback in satellite data?

Satellite vs. AR4 Model
Global LW feedback parameters

Satellite vs. AR4 Model
Global LW+SW feedback parameters

IPCC AR4 20th Century, (detrended)
Terra CERES vs. UAH MT

Avg. 1-Month Diagnosed Slope (from largest 40% of 1-month ΔT's)

Running Avg. 1-Month Diagnosed Slope (from largest 40% of 1-month ΔT's)
Implications for Satellite Diagnosis of Feedbacks

• Feedback diagnosis MUST account for “internal radiative forcing” (which decorrelates data)
 – Feedback can NOT be measured when it’s from time-varying radiative forcing of any kind (UNLESS known accurately and removed, e.g. CO2 forcing in a model)

• IGNORING internal radiative forcing leads to Feedback Parameter diagnosis errors which are variable and (usually) biased low
 – Spencer & Braswell 2008 J Climate

• Conceptually, this is a “cause vs. effect” issue:
 CLOUDS <=> TEMPERATURE
 – Previous feedback diagnoses have ignored the effect of causation in one direction: (clouds => temperature)
Backup Slides
WHY TROPOSPHERIC TEMPERATURE RATHER THAN SURFACE TEMPERATURE?

At ~1 month time resolution, Radiative Flux Anomalies (Aqua CERES LW+SW) are more closely correlated with Tropospheric Temperature (AMSU5) than with Sea Surface Temperature (AMSR-E).
IPCC CMIP Model Behavior vs. Satellite: evidence of negative cloud feedback?

Running Avg. Regression Slopes Sorted by abs(ΔT)

- Terra CERES LW+SW vs. UAH MT
 (9 years, global)

IPCC CMIP Models
(global, 20th Century)

<= largest ΔT’s

smallest ΔT’s =>