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[1] The impact of time-varying radiative forcing on the diagnosis of radiative feedback
from satellite observations of the Earth is explored. Phase space plots of variations in global
average temperature versus radiative flux reveal linear striations and spiral patterns in
both satellite measurements and in output from coupled climate models. A simple forcing-
feedback model is used to demonstrate that the linear striations represent radiative feedback
upon nonradiatively forced temperature variations, while the spiral patterns are the result
of time-varying radiative forcing generated internal to the climate system. Only in the
idealized special case of instantaneous and then constant radiative forcing, a situation that
probably never occurs either naturally or anthropogenically, can feedback be observed in
the presence of unknown radiative forcing. This is true whether the unknown radiative
forcing is generated internal or external to the climate system. In the general case, a mixture

of both unknown radiative and nonradiative forcings can be expected, and the challenge
for feedback diagnosis is to extract the signal of feedback upon nonradiatively forced
temperature change in the presence of the noise generated by unknown time-varying
radiative forcing. These results underscore the need for more accurate methods of diagnosing
feedback from satellite data and for quantitatively relating those feedbacks to long-term

climate sensitivity.

Citation: Spencer, R. W., and W. D. Braswell (2010), On the diagnosis of radiative feedback in the presence of unknown
radiative forcing, J. Geophys. Res., 115, D16109, doi:10.1029/2009JD013371.

1. Introduction and Background

[2] The sensitivity of the climate system to long-term
radiative forcing from anthropogenic greenhouse gas emis-
sions remains the greatest source of uncertainty in projections
of future climate change [Intergovernmental Panel on
Climate Change (IPCC), 2007]. Unfortunately, the diag-
nosis of the feedbacks that determine climate sensitivity
from observational data has been hampered by uncertain
and conflicting results. In the face of this uncertainty,
investigators have turned to other methods of estimating
climate sensitivity, such as temperature proxy responses to
presumed forcings involved in ancient climate change events
or reliance on climate models, which are adjusted to mimic
other observed features of the present day climate system.
Knutti and Hegerl [2008] provide a review of numerous
estimates of climate sensitivity obtained by a variety of
methods.

[3] While others have concluded that feedbacks are diffi-
cult to accurately diagnose [e.g., Aires and Rossow, 2003;
Stephens, 2005], there has been little investigation into the
specific reasons why this would be the case. The importance
of the climate sensitivity issue demands a more thorough
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understanding of the processes which influence variations
in the top-of-atmosphere (TOA) radiative budget, including
the conditions under which accurate or inaccurate feedback
diagnoses might be expected.

[4] The impetus for this study is the existence of pecu-
liarities found during our analysis of satellite observations of
thermally emitted longwave (LW) and reflected solar short-
wave (SW) radiative flux and temperature variations. This
led us to reexamine the established method of diagnosing
feedbacks wherein the slope of a linear regression fit to the
covariations between globally averaged TOA radiative flux
variations and temperature variations is measured.

[5] We will argue that the largest source of error in feed-
back diagnosis is the presence of time-varying radiative
forcing generated internal to the climate system, which then
contaminates the radiative feedback signal. Removal of
known radiative forcings from the data in order to diagnose
radiative feedback has been demonstrated by Forster and
Taylor [2006, hereafter FT06] in their diagnosis of the
long-term feedbacks operating in the IPCC AR4 coupled
climate models and by Forster and Gregory [2006, hereafter
FGO06] in their satellite diagnosis of LW and SW feedbacks
in response to the aerosol radiative forcing after the 1991
eruption of Mt. Pinatubo. But what has not been addressed
in any systematic way is the impact of unknown radiative
forcings on the diagnosis of feedback.

[6] We will show that the signature of internally generated
radiative forcing, such as nonfeedback variations in cloud
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cover, is ubiquitous in both satellite measurements and
in coupled atmosphere-ocean general circulation models
(AOGCMs). While some investigators have called this
“unforced internal variability” [e.g., Wong et al., 2006],
we will argue that it is more consistent and less confusing
within the forcing-feedback paradigm of climate change to
call such variations internal radiative forcing.

2. A Simple Model of Forcing and Feedback

[7] Considerable insight into the issues impacting the
diagnosis of feedback can be gained with the simple time-
dependent forcing-feedback model represented by

Cp AT /df] = F(t) — Anet Tt (1), (1)
where Ty, is the global average surface temperature deviation
away from an equilibrium state of energy balance, C,, is the
bulk heat capacity of the system, F' represents one or more
heat flux forcings (energy imbalances) causing temperature
departures from equilibrium, and A, is the net radiative
feedback parameter, the reciprocal of which is the climate
sensitivity parameter of the simple modeled system. It is
important to recognize that, while feedback in this simple
model is explicitly specified through the A\, 7Tss term, the
feedbacks in AOGCMs are not specified but are instead the
net result of how the various physical processes in those
models combine to lead to temperature-dependent changes in
the TOA radiative budget.

[8] The feedback parameter A, is the sum of all reflected
SW and thermally emitted LW feedbacks,

Anet = Asw + ALw, (2)

the reciprocal of which is the climate sensitivity parameter.
The longwave feedback parameter Apyw also includes the
“Planck” (or “Stefan-Boltzman”) direct response of the out-
going longwave flux to temperature change, amounting to
about 3.3 W m 2 K" at the average effective radiating tem-
perature of the Earth, 255 K. Negative SW or LW feedbacks
add positively to the radiative loss of the system as temper-
ature increases, pushing the feedback parameter to values
greater than 3.3 W m > K. Positive feedbacks reduce the
radiative loss by the system in response to a temperature rise,
leading to A, values less than 3.3 W m 2K L

[9] Note that if positive feedbacks (which contribute neg-
atively to the feedback parameter) were to more than cancel
out the Planck response of 3.3 W m 2 K, then the feedback
parameter becomes negative and the system represented by
equation (1) is potentially unstable to perturbations. As we
will see, negative feedback parameters can be erroneously
diagnosed if sufficient time-varying radiative forcing is
present.

[10] Mostofthe AR4 models have net feedback parameters
between 1 and 2 W m 2 K~' (FT06). While this is a fairly
narrow range, it represents a wide range of equilibrium
climate sensitivities: 1.9°C—3.8°C of warming for a doubling
of atmospheric carbon dioxide (2xCO,) assumed here to
cause a LW forcing of 3.8 W m . This is because of the
reciprocal relationship of climate sensitivity to feedback,
so that feedback values sufficiently close to zero can corre-
spond to a wide range of high climate sensitivities [e.g.,
Lindzen and Choi, 2009].
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[11] There are different ways in which equation (1) can
be used to diagnose feedback. For example, since individ-
ual radiative forcings cause a temperature response that
decays exponentially with time, the autocorrelation structure
exhibited by the time series of global average temperature can
be analyzed to estimate feedback in the system. This method
has yielded a variety of results [Gregory et al., 2002;
Schwartz, 2007; Knutti et al., 2008; Schwartz, 2008; Foster
et al., 2008; Scafetta, 2008], but its utility is limited by
sensitivity to the assumed heat capacity of the system [e.g.,
Kirk-Davidoff, 2009].

[12] The simpler method we analyze here is to regress the
TOA radiative variations against the temperature variations.
If the radiative variations are due only to feedback (a critical
requirement which we will show is, in general, not met), then
regression of the radiative feedback term Ao 7s against Tyg
will yield A\, no matter what the system heat capacity is.
Note that the question of whether any feedback diagnosed
from short-term climate variability is an indicator of long-
term climate sensitivity is a separate problem.

[13] The central issue we will examine is that satellite
measurements of variations in radiative flux contain a mixture
of forcing and feedback and the presence of one will affect the
identification and estimation of the other. Our specific interest
is a better understanding of the impact that unknown levels
of time-varying radiative forcing have on feedback diag-
nosis and what that might mean for the estimation of climate
sensitivity.

3. Satellite Data Analysis

[14] Our first satellite data analysis is based upon Terra
CERES [Wielicki et al., 1996] Edition 2 ERBE-like ES4
LW and SW daily average radiative fluxes, with the REV1
SW drift corrections applied. We computed monthly global
anomalies in both TOA LW and reflected SW fluxes from
CERES and compared them to anomalies in either deep-layer
midtropospheric temperature estimates (Tyt) [Christy et al.,
2003] or to HadCRUT3 surface temperature (7ss.) anomalies
[Brohan et al., 2006]. We compute anomalies as deviations
from the average annual cycles in these two data sets over
the 9 year CERES period of record extending from March
2000 through December 2008.

[15] Globally averaged anomalies in CERES net (LW +
SW) fluxes are plotted against midtroposphere temperature
estimates in Figures la, lc, and le and against surface tem-
perature anomalies in Figures 1b, 1d, and 1f. The sets of three
frames are for 1, 3, and 7 month averaging times, respec-
tively. As can be seen, there is considerable scatter in the
relationships no matter whether tropospheric or surface
temperatures are used and at all three averaging times. This is
consistent with low correlations found in the Earth Radiation
Budget Experiment (ERBE) regression analysis of FGO6,
whose regressions averaged only 15% explained variance.
The regression slopes in Figure 1 range from near-zero to
2.5 W m 2 K ', depending upon the averaging period, and
whether surface or tropospheric temperatures are used, which
illustrates why satellite diagnoses of feedback have remained
so uncertain. Since all explained variances are rather low,
there is great uncertainty in the value of each slope.

[16] Athigh time resolution, we even find some evidence of
a negative regression slope when referenced to surface tem-
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Figure 1. Global average Terra CERES net (LW + SW) radiative flux anomalies (a, ¢, and e) versus UAH
midtropospheric temperature (7)) anomalies and (b, d, and f) versus HadCRUT3 surface temperature
(Tsg.) anomalies at the indicated averaging times of 1, 3, and 7 months during the period March 2000 through

December 2008.

perature. This cannot represent the real sensitivity of the
climate system since, as mentioned previously, the system
would be unstable to perturbations. This behavior becomes
more apparent when the data averaging time is reduced to less
than monthly. For instance, if we restrict the analysis to the
global oceans (60°N—60°S latitude) where we have approx-

imately daily, near-all-weather sea surface temperatures
(SSTs) from the Advanced Microwave Scanning Radiometer
(AMSR-E) flying on NASA’s Aqua spacecraft, we can
approach daily time resolution. We computed daily radiative
flux anomalies in the AMSR-E SSTs available from remote
sensing systems and in the radiative fluxes measured by the

30f 13



D16109

0.8 - a. versus AMSU5
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 U L} e |\ T L} L} T - mle = 1
N ~
0.1 - \—/\\ CERES%M{
0.2 s/
0.3

Correlation

-30 -25 -20 15 10 -5 0 5 10
Lag (days)

15 20 25 30

0.7 7 b. versus AMSR-E SST
0.6 |

0.5
0.4
0.3
0.2
0.1 &

o+
-0.1
-0.2
-0.3

Correlation

-30 -25 -20 15 110 -5 0 5
Lag (days)

10 15 20 25 30

Figure 2. Lag correlation plots of daily global ocean-
averaged anomalies in LW, SW, and net (LW + SW) radiative
flux as measured by CERES (a) versus tropospheric tem-
perature from AMSU channel 5 and (b) versus sea surface
temperature.

CERES flying on the Aqua spacecraft. The midtropospheric
temperature anomalies now come from channel 5 of the
Advanced Microwave Sounding Unit (AMSU-A) flying on
the NOAA-15 satellite since the Tyt products (which are also
based upon AMSU channel 5) do not include ocean-only
averages at daily time resolution. In Figure 2a, we see that
there is a high correlation (» = 0.70) at zero days time lag
between tropospheric temperature and net (LW + SW) radi-
ative flux even though the temperature and radiative flux
measurements come from instruments on different spacecraft.
But the radiative flux correlations with SST, in stark contrast,
are weakly negative (Figure 2b) despite the two measure-
ments coming from the same spacecraft.
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[17] The fact that radiative flux variations are much more
strongly correlated with tropospheric temperature than sur-
face temperature suggests a stronger feedback relationship at
the shorter, intraseasonal time scales. Later we will see that
this difference in behaviors at high time resolution is related
to a type of forcing in the climate system that actually facil-
itates the identification of radiative feedback.

[18] Of course, as the time scale is increased, the coupling
between surface and tropospheric temperature variations can
be expected to be much stronger. Table 1 provides some
regression statistics between these two temperature measures
for both standard least squares regression (the dependent
variable Tyt estimated from the independent 7s) and a two-
way regression coefficient estimate based upon the geometric
mean of two slopes where one of the regressions has the
two variables interchanged. The statistics in Table 1 reveal
that global average surface and tropospheric temperature
anomalies do indeed become better correlated as the aver-
aging time is lengthened, reaching 75% explained variance
for yearly global averages. The midtropospheric temperature
anomalies are somewhat magnified compared to the surface
temperature anomalies, a fact which must be kept in mind
if comparing feedback parameters computed relative to the
different temperature measures.

[19] We find that considerable physical insight into the
covariations between radiative flux and temperature can be
gained through phase space plotting of the data. Using the
1 month comparisons between CERES radiative fluxes and
Twmr in Figure 1a as an example, if we connect the data points
in time sequence (Figure 3a), we can visualize the time
evolution or “trajectory” of the system. In this case, we see
evidence of linear striations having a steeper slope than a
linear regression fit using all of the data together. Those
striations are approximately parallel to the dashed line, which
is drawn to have a slope of 6.2 W m 2 K™ '. This value is the
average slope of all of the month-to-month line segments
in Figure 3a. These striations are significantly different from
a similar plot of two time series of random numbers, shown
in Figure 3b, suggesting that the striations are due to some
underlying physical process.

[20] A second behavior we find in phase space plots of the
data is spiral or looping patterns, especially when running
averages are plotted. While this would be expected to some
extent simply from the averaging process alone, some of the
features are quite striking, as shown in Figure 4. In Figure 4a,
there is a large looping structure in Terra CERES data that
corresponds to the strong global cooling event of late 2007
and early 2008. A similar loop is seen in Figure 4b based upon
recalibrated ERBE data [Wong et al., 2006] associated with
the cooling that occurred after the June 1991 eruption of
Mt. Pinatubo. Because of orbital limitations of the Earth
Radiation Budget Satellite (ERBS), the ERBE anomalies

Table 1. Regression Relationships Between Global Average Surface Temperature Anomalies and Midtropospheric Temperature
Anomalies During March 2000 Through December 2008 at Various Data Averaging Intervals

Regression Slope Type Monthly Slope (R2)

3 Months Slope (R2)

7 Months Slope (R2) 12 Months Slope (R2)

A 7-‘MT /A Tsfc
Geometric mean

0.89 (39%)
1.42

1.05 (54%)
1.43

1.17 (63%)
1.47

1.44 (75%)
1.67
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Figure 3. (a) As in Figure la, but a phase space plot of
the data points connected in time sequence. The dashed line
represents the average slope of all month-to-month line
segments. (b) Phase space plot of two separate time series of
normally distributed random numbers.

cover the latitude range of 60°N—60°S and must be averaged
to five 72 day periods per year to prevent aliasing of the
diurnal cycle into the anomalies.

4. Climate Simulations With the Simple Model

[21] All of the behaviors seen so far (very low correlations
between temperature and radiative flux anomalies, substan-
tially different regression slopes for radiative flux relative to
tropospheric versus surface temperature, and linear striations
or spirals in phase space plots of the data) can be explained
based upon a few fairly simple, yet fundamental, processes
that can be demonstrated with the simple forcing-feedback
model represented by equation (1). We will begin with the
familiar, but idealized, example of instantaneous radiative
forcing, since it seems to have led to some misunderstanding
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regarding the diagnosis of feedback in the climate system. We
will then add increasing levels of realism to the simple model.

4.1. Case 1: Classic Case of Instantaneous Radiative
Forcing

[22] Intheidealized case of instantaneous radiative forcing,
the climate system is assumed to be in an initial state of
radiative equilibrium at a constant average temperature, with
the rate of absorption of SW energy by the Earth equaling the
rate of emitted LW energy. Then the Earth’s radiative balance
is upset by the instantaneous introduction of a radiative
forcing agent, for instance, a doubling of the carbon dioxide
concentration of the atmosphere, which is then kept constant
over time.
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Figure 4. Net (LW + SW) radiative flux anomalies versus
middle tropospheric temperature (71) anomalies from
(a) CERES during March 2000 through December 2008,
3 month anomalies plotted every month, and (b) ERBE dur-
ing 1985 through 1999, 216 day anomalies plotted every
72 days. There are five 72 day periods in a calendar year,
and the date labels shown in Figure 4b refer to which centered
72 day period the data point corresponds to.

50f 13



D16109

G E
52
53 —
$ S
c ® .
s o
s E
. @
@ 2
Ss
- 5-
©
(4
-4.0
0 10 20 30 40 50
Model Years
3.0
= b.
X 25
E 20 -ALF -AT]
= AT
S 15
Qo
2 1.0 -
)
§ 0.5 -
g 0.0 . . . . ; ; . . ! !
 -0.5 -
4
-1.0 -
0 10 20 30 40 50
Model Years
— 1.0 .
£ C.
= 0.0 ¢ T T T T T 1
> -4
g -1.0
-2 K1
5 20 ] 2.5Wm2K
<
.g -3.0 1
© -
S 40
©
X 50 =

-2.0 1.5 1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Temp. Anomaly (deg. C)

Figure 5. Output of a simple forcing-feedback model
instantaneously forced with an energy imbalance of
3.8 W m 2, displayed as (a) time series of the model temper-
ature and total TOA radiative flux variations, (b) time series
of regression slopes computed from the two time series in
Figure 5a over the period of record up to that time, and
(c) scatterplot of the temperature and radiative flux data
against one another. A uniformly mixed (swamp) ocean
100 m deep and a feedback parameter of 2.5 Wm 2 K ' were
assumed in this experiment.

[23] If we run a finite difference form of the model
represented by equation (1) with a time step of 1 month, a heat
capacity equivalent to a perfectly mixed (swamp) ocean layer
depth of 100 m, a feedback parameter of 2.5 Wm K ', and
an instantaneous forcing of 3.8 W m 2 representing 2xCO,,
then the resulting changes in temperature and radiative
imbalance shown in Figure 5a result. This idealized case
of constant radiative forcing has an analytical solution,
with an exponentially decaying temperature response with
time [e.g., Gregory et al., 2004]. As mentioned previously,
the exponential decay behavior is the basis of the feedback
diagnosis method of Schwartz [2007] and others.

[24] If we plot the resulting temperature variations against
the radiative flux variations (see Figure 5c), we find that
the data fall neatly along a line, the slope of which exactly
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matches the feedback specified in the model simulation,
2.5Wm 2K . As discussed by Gregory et al. [2004] and as
shown in Figure 5b, one need not wait for a new equilibrium
state to be reached to diagnose the feedback (and thus the
equilibrium climate sensitivity) in the case of instantaneous
radiative forcing. This is because, in the absence of noise
or time variations in feedbacks or system heat capacities,
the initial changes in temperature and net radiative flux will
immediately and precisely follow the feedback specified
in the model run. Replacement of our assumed values for
forcing, feedback, or heat capacity with other values (not
shown) would reveal that the relationships shown in
Figures 5b and 5c remain unchanged.

[25] But the only reason why feedback can be accurately
diagnosed in this case is that all of the radiative variability is
due to feedback, since the radiative forcing remains constant
as the system relaxes to a new state of equilibrium. This
fact raises a somewhat obscure point that is seldom if ever
mentioned: the radiative forcing does not go away when
energy balance is restored. The radiative forcing remains in
the system, which is why the temperature response remains
in the system. A new state of radiative balance is reached
when the radiative feedback response to the warming exactly
offsets the radiative forcing. While this distinction between
radiative forcing and radiative imbalance is a subtle one, we
will see that it permits a more consistent conceptual under-
standing of the relationships between forcing and feedback.

4.2. Case 2: Transient Radiative Forcing

[26] While the previous idealized case has been widely
exploited both qualitatively and quantitatively, there is
probably no real-world example where radiative forcing
is instantaneously imposed and then remains constant. For
instance, the carbon dioxide concentration of today’s atmo-
sphere was not instantaneously increased but has been slowly
growing over time. This is why coupled climate models are
now run with transient radiative forcing, often an assumed
1% annual growth rate in the carbon dioxide concentration
of the model atmosphere. And while an explosive volcanic
eruption might at first seem to be a good example of instan-
taneous radiative forcing, that forcing does not remain con-
stant but diminishes over time.

[27] To demonstrate how feedback diagnosis is affected by
transient radiative forcing, we again ran the same simple
model, but with the radiative forcing increasing linearly with
time at a rate of 0.4 W m 2 per decade, which approximates a
doubling of the CO, concentration of the atmosphere over
100 years. The modeled radiative imbalance and tempera-
ture then evolve as is shown in Figure 6a. As can be seen,
the model behavior is very different from the instantaneous
radiative forcing case shown in Figure 5. Since the transient
radiative forcing keeps increasing with time, so does the
warming.

[28] But more significant to our goal of diagnosing feed-
backs, Figures 6b and 6c reveal that a regression slope
computed at any point in time in the model simulation will not
onl?/ be different from the specified feedback of 2.5 W m 2
K, it will always result in a negative regression slope. Upon
some reflection, we realize that this must be the case since the
radiative forcing accumulates faster than the radiative feed-
back can relieve the imbalance for any system with finite heat
capacity. The only way it could become positive is for the
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Figure 6. As in Figure 5, but with linearly increasing radi-
ative forcing with time at a rate of 0.4 W m 2 per decade.

radiative feedback response to be greater than the radiative
forcing, which is physically impossible.

[20] If mistakenly interpreted as the signature of feedback,
anegative regression slope would suggest an unstable climate
system, with positive feedbacks outweighing the Planck
response of 3.3 W m 2 K™'. While no one who is knowl-
edgeable would make this mistake for the case of known
transient radiative forcing in a model simulation, our point is
to introduce the issue of what can happen when diagnosing
feedbacks from satellite data if radiative forcing is not
accounted for. This simple example of transient radia-
tive forcing demonstrates that the feedback in response to
increasing greenhouse gas concentrations cannot be diag-
nosed from satellite data without somehow correcting for the
presence of that forcing. Consistent with FT06’s diagnosis
of long-term feedbacks in the IPCC AR4 coupled climate
models, simply subtracting out the radiative forcing as a
function of time from the data in Figure 6 will yield an
accurate estimate of the feedback parameter, just as was seen
in Figure 5. But without the removal of the transient radiative
forcing, the estimate of radiative feedback will be corrupted.

[30] Next we will add another level of realism to the simple
model: quasi-random, fluctuations in radiative forcing, as
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might be expected from nonfeedback fluctuations in low
cloud cover. As we will see later, evidence of such internally
generated variations in the radiative balance of the climate
system is also exhibited by the AR4 coupled climate models.

4.3. Simple Case 3: Random Cloud Variations

[31] Internal radiative forcing from nonfeedback fluc-
tuations in cloud cover could potentially be brought about
through circulation-induced changes in tropospheric wind
shear, frontal system behavior, precipitation efficiency, trade
wind inversion strength, or any other of the myriad processes
that can potentially affect cloud formation other than feed-
back upon temperature. It corresponds to the “X” term
addressed theoretically by FG06 and is similar to the case
analyzed by Spencer and Braswell [2008, hereafter SB08].

[32] We use a 7 month low-pass filtered time series of
monthly normally distributed random numbers whose long-
term average approaches zero for the forcing. The resulting
time series of radiative imbalance and temperature are shown
in Figure 7a, while the regression slope based upon the
accumulated model output is shown in Figure 7b. Despite
the feedback parameter value of 2.5 W m * K™' assumed in
the model simulation, regression on all 50 years of model
output (Figure 7c) now reveals almost total decorrelation of
the data, with the slope of a regression line approaching zero.

[33] But it turns out that the seemingly random distribu-
tion of points in Figure 7c once again has structure when
one monitors the time evolution of the system with a phase
space plot (Figure 7d), as was done with the satellite data in
Figures 3 and 4. A looping or spiral pattern emerges in the
data, a reflection of the fact that radiative forcing in
equation (1) is not proportional to temperature per se, but to
the time rate of change of temperature. For instance, it can
be shown that if the only source of radiative forcing in
equation (1) is a single harmonic function, then the temper-
ature response traces out a circle when the data are plotted in
phase space. This is because the forcing and its temperature
response are in quadrature, i.e., is separated in phase by 90°.
The spiraling or looping character of the system trajectory
seen in Figure 7d exists independent of the assumed system
heat capacity, feedback strength, or whether the radiative
forcing is low-pass filtered random numbers or periodic.
Under these different conditions, only the size and the aspect
ratio of the loops and spirals change.

[34] Depending upon how the low-pass filtered random
radiative forcing evolves over time, slopes based upon only
10 year periods of data (the thin line in Figure 7b) can range
from —3 to +6 W m > K. This represents a larger range of
slopes than is typically found in satellite data analysis, a
problem which will be alleviated with the next level of real-
ism in the model forcing. If the period of record to-date is
used in the regression (the thick line in Figure 7b), a more
stable regression slope is obtained, but with a fairly persistent
low bias approaching 2 W m > K.

[35] Again, the reason why the regression slope does not
accurately reflect the feedback specified in the model
experiment is that the radiative feedback signal is partly
obscured by the time-varying radiative forcing. In fact, if the
only source of temperature variability in the system is from
time-varying radiative forcing, the feedback is for all prac-
tical purposes not observable.
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Figure 7. Asin Figure 5, but with forcing based upon a time
series of low-pass filtered random numbers used for the
radiative forcing, the thin line in Figure 7b shows 10 year
regression slopes while the thick line shows regressions
slopes based upon all model output up to that time and
Figure 7d is a phase space plot of the data in Figure 7c.
Dashed lines represent the feedback parameter (2.5 W m >
K ') assumed in the model simulation.

4.4. Tmportance of Nonradiative Forcing to Feedback
Diagnosis

[36] So far, the only behavior we have not seen yet in the
simple model that was exhibited by the satellite data is the
linear striations shown in Figure 3a. The reason we have
not seen such striations is that the model is still missing
an important forcing which exists in nature. This additional
type of forcing will also explain why the satellite radiative
flux variations at high time resolution tend to be negatively
correlated with surface temperature, as was seen in Figures 1
and 2.

[37] While the forcing term F in equation (1) has included
only radiative components up to this point, nonradiative
forcing of temperature also occurs in the climate system,
especially on the shorter time scales. Only 1% or 2% varia-
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tions in the global average rate of convective heat flux from
the surface to the atmosphere, which has been estimated to be
100 W m 2 [Kiehl and Trenberth, 1997], will cause tempo-
rary forcings that rival the total estimated anthropogenic
radiative forcing to date [/PCC, 2007]. Evidence for this
process was shown by Spencer et al. [2007] in their analysis
of'a composite of 15 strong tropical intraseasonal oscillations,
where strong warming events in the tropical troposphere were
accompanied by weak SST cooling. This process was driven
by stronger surface winds temporarily enhancing the heat flux
from the ocean to the atmosphere.

[38] Note that this type of forcing would not exist if it was
the total heat content of the system that was monitored rather
than the temperatures of it components. But since feedback is
referenced to temperature, our analysis uses temperature, and
so we are forced to deal with the complication that the climate
system has a variety of temperatures (of the troposphere,
upper ocean, and deep ocean) that do not vary in unison. For
instance, as can be inferred from the lag correlation plots in
Figure 2, tropospheric warming tends to coincide with ocean
cooling on short time scales, ¢.g., weeks or less. Another type
of nonradiative forcing would be an SST change caused by a
change in the rate of ocean upwelling.

[39] Significantly, nonradiative forcing of temperature is
very important to feedback diagnosis because it is the only
type of temperature forcing for which the radiative feedback
response can be clearly observed in the radiative flux data.
This is because, except for the unrealistic special case of
constant radiative forcing, only nonradiative forcing of tem-
perature will result in TOA radiative flux variations that
are purely due to feedback, with no contamination from
radiative forcing. The presence of any time-varying radia-
tive forcing will act to corrupt the diagnosis of feedback, as
seen in Figures 6 and 7.

[40] With the addition of nonradiative forcing of temper-
ature, we now have three basic classes of forcing comprising
F in equation (1),

F(t) =f(1) + N(1) +5(0), ®3)

where f'is any external source of radiative forcing such as
anthropogenic greenhouse gas emissions; N is any internally
generated nonfeedback source of radiative forcing such as
circulation-induced changes in cloud cover; and S is any
nonradiative forcing of temperature change such as tropical
intraseasonal oscillations in the rate of heat transfer from
the ocean to the atmosphere. Including all of these classes
of forcing in equation (1), we finally have arrived at the
same model formulation used by SB08 to study the potential
contamination of radiative feedback estimates by radiative
forcing,

CpldTs/de] = f(2) + N(t) + S(¢) — AnetTosc(2), (4)
but now we begin to see why the terms in equation (4) were
included by SB08. Note that, while the simple model refers
to surface temperature, our comparisons to satellite data will
be to tropospheric temperature for the reasons discussed in
section 3.

[41] If we now run the model represented by equation (4)
with various combinations of internal radiative () and
nonradiative (S) forcings that vary randomly with time, added
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Figure 8. As in Figure 7, but the model is now forced with a
combination of transient radiative, low-pass filtered ran-
dom radiative and low-pass filtered random nonradiative
forcings. The specified feedback parameter has been increased
to6Wm K.

to the transient anthropogenic forcing f, we find that a com-
bination of linear and spiral-shaped structures emerge in the
phase space plots of temperature versus total radiative flux
(see Figure 8). The specified feedback parameter has now
been increased to 6 W m 2 K™' for this model simulation.
Note the linear striations in the data that are approximately
parallel to the feedback specified in the model simulation
indicated by the dashed line. This potentially explains the
linear striations seen in Figure 3a as a reflection of the net
feedback operating in the climate system on intraseasonal
time scales.

[42] The diagnosed regression slopes in Figure 8b reveal
once again that underestimates of the specified feedback
almost always occur when there is time-varying radiative
forcing present, especially if the whole period of record is
used in the regression (thick line). But with nonradiative
forcing now present, the variations in the 10 year slopes are
not as extreme because feedback now constitutes a larger
proportion of the radiative variability. As was shown by
SBO08, the magnitude of the average low bias in the diagnosed
feedback is related to the relative proportions of radiative to
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nonradiative forcings present in the climate system. Quasi-
random radiative forcing without any nonradiative forcing
results in a low bias in the diagnosed feedback approaching
100%. This happens around 10 and 25 years into the model
simulation in Figure 8b, where a minimum in the diagnosed
regression slope occurs. But relatively large levels of non-
radiative forcing with little change in radiative forcing will
result in feedback diagnosis errors approaching 0%, as seen
around 20 and 30 years into the simulation in Figure 8b.

[43] Thus, to the extent that our simple model behaves
realistically, we conclude that the accurate diagnosis of
radiative feedback from limited satellite data sets becomes a
signal-to-noise problem. Nonradiative forcing of temperature
provides the feedback signal, while internal radiative forcing
produces noise in the form of a decorrelated relationship
between radiative flux and temperature. As demonstrated by
SBO08, the decorrelated component tends to cause a low bias
in the diagnosed feedback parameter, although little bias (or
even a high bias as seen in Figure 8b) can sometimes result if
the period of record being analyzed is short and the proportion
of radiative to nonradiative forcing is high.

[44] Nextwe will examine the behavior of the AR4 coupled
climate models to see whether our interpretations based upon
the simple climate model are consistent with the behavior
exhibited by the more complex climate models.

5. Forcing and Feedback Signatures in the IPCC
Climate Models

[45] Now that we have a better understanding of the
main categories of processes that can affect the covariations
between temperature and radiative flux, we are in a better
position to interpret the behavior of the coupled climate
models. Our intent is not to diagnose the long-term climate
sensitivity in those models, since that has been done fairly
accurately by FT06. Instead, we wish to see whether the fully
coupled models contain variability that is consistent with our
use of and physical interpretations from the simple model.

[46] The coupled model data come from the World Climate
Research Programme’s (WCRP) Coupled Model Intercom-
parison Project phase 3 (CMIP3) multimodel data base
[Meehl et al., 2007]. We analyzed monthly global anomalies
in surface temperature, total LW flux, and total SW flux for
the first 50 years of archived transient (1% per year carbon
dioxide increase) simulations. Again, the monthly anoma-
lies are computed by subtracting out the multiyear average
monthly annual cycles for each variable.

[47] We will show comparisons to surface temperature only
since the radiative relationships to tropospheric and surface
temperature in the models were very similar. An example
of the covariations between LW flux and T, anomalies is
shown in Figure 9 for the National Center for Atmospheric
Research (NCAR) PCM1 model. Running 3 month averages
are plotted in Figure 9a, which shows considerable scatter in
the data just as we saw from the simple model experiment in
Figure 8.

[48] The solid line is a regression fit to the data, while the
slope of the dashed line represents the more accurate long-
term feedback diagnosed by FT06. In Figure 9b, we have
plotted a phase space presentation of the data where 11 month
low-pass filtered anomalies are plotted every month and
connected by lines.

9 of 13



D16109

1.5 a. 3-month averages 7z
G FT06
€1.0
=3
> 0.5

o
o

1
=Y
o

LW Flux Anomal
&
(4, ]

R? = 0.04

A
)
N

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

08
c 0.6
2 0.4
>
g 0.2
c 0.0
<
<.0.2
3
=-0.4
2-0.6
-l
0.8

b. 11-month filtered 7
FTO06

-0.6

-0.4
Tsfc Anomaly (deg. C)

-0.2 0.0 0.2

Figure 9. Global average anomalies in the NCAR PCM1
climate model fields of surface temperature versus total
top-of-atmosphere LW radiative flux for (a) monthly run-
ning 3 month averages and (b) 11 month low-pass filtered
averages. The solid lines are regression fits to the data, while
the slope of the dashed lines represent the LW feedback
parameter diagnosed by FT06.

[49] There are three notable behaviors in the PCM1 model
data shown in Figure 9 that can be traced to each of the three
classes of forcing included in equation (4). First, the vastly
different slopes of the FT06-diagnosed feedback (dashed
line) and the regression line slope (solid line) are mostly due
to the long-term transient LW radiative forcing imposed upon
the model, as was also the case in the simple model example
shown in Figure 6. As mentioned previously, this forcing was
removed from the model output by FT06 in order to better
isolate and diagnose the feedbacks in response to the warming
caused by that long-term transient forcing.

[50] Second, the looping or spiral-shaped patterns seen
in Figure 9b are similar to behavior observed in the earlier
simple model experiment shown in Figure 8 when it was
forced by randomly varying radiative and nonradiative
forcings. Spiral and looping patterns were the most robust
signature we found in the phase space plots of AR4 model
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output. They were somewhat less apparent in the LW fluxes,
but as we will see examples of later, they were clearly
apparent in the SW fluxes in all 18 models.

[5s1] Then third, the linear striations are consistent with the
expected signature of feedback upon nonradiative forcing
of temperature. As in the simple model plot of Figure 8c,
the striations are mixed in with the spiral patterns caused by
internal radiative forcing, resulting in a mixing together of
these two behaviors. It is presumed that the feedback-induced
striations only become clearly apparent when the nonradiative
forcing in the model (e.g., fluctuations in ocean-atmosphere
heat exchange) is large relative to any fluctuations in inter-
nal radiative forcing. We believe that this is the explanation
for the striations shown in the monthly global average satel-
lite data of Figure 3a, the slopes of which appear to be around
6Wm K"

[52] The similarity of the slopes of the linear striations in
Figure 9b to the feedback parameter FT06 diagnosed suggests
that the short-term and long-term LW feedbacks in the PCM1
model are similar in magnitude. Unfortunately, of the 18 AR4
models we examined, these linear striations in the LW flux
component were clearly seen in only four of those models, all
shown in Figure 10. In all four the striations are roughly
parallel to the long-term feedbacks diagnosed in the models
by FT06.

[53] The general lack of striations in the model data is
consistent with our observation that there was tighter cou-
pling between surface and tropospheric temperature varia-
tions in the AR4 models than we see in the satellite data. This
would be consistent with less nonradiative forcing of tem-
perature variations. A more quantitative analysis of any
similarities between the striations and the feedbacks diag-
nosed by FTO06 is beyond the scope of this paper. Our goal at
this point is simply to establish a better understanding of the
ways in which radiative forcing and radiative feedback are
expressed in the data.

[s4] The corresponding SW relationships for these five
models, shown in Figure 11, reveal much better agreement
between the regressions slopes computed here and the feed-
back parameters diagnosed by FT06. The main reason for this
agreement is that our SW regressions are substantially the
same as those performed by FT06. Because the forcing that
was imposed upon the AR4 models in the transient forcing
experiments was LW in origin, not SW, there was no long-
term SW forcing contaminating the diagnosis of SW feed-
back response to the LW-induced warming. As a result, our
SW regression slopes from the 18 models based upon the
50 year periods of record were highly correlated (r = 0.94)
with the SW slopes diagnosed by FT06 for those models.

[55] The AR4 model results for the net (LW + SW) vari-
ability, shown in Figure 12, is a combination of the behaviors
seen for the LW and SW fluxes separately. Linear striations
with a common slope are no longer obvious; we found that
none of the 18 models we analyzed showed obvious feed-
back-induced striations in the net (LW + SW) phase space
plots. As alluded to previously, this might be due to the
general lack of strong nonradiative forcing events such as
tropical intraseasonal oscillations in the coupled climate
models [Lin et al., 2006; Spencer et al., 2007]. The regres-
sion slopes in Figure 12 are all biased low compared to
those diagnosed by FT06, a relationship that existed for all
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18 models. Again, this low bias is mostly the result of the
long-term LW transient radiative forcing which has not been
removed from the model output.

6. Discussion and Conclusions

[56] Previous attempts to diagnose radiative feedback in the
climate system from the covariations between TOA radiative
flux and temperature have yielded generally low correlations
and a wide variety of feedback estimates. The evidence pre-
sented here (from satellite, a simple forcing-feedback model,
and from coupled climate models) suggests that the dominant
source of that decorrelation is the presence of time-varying
radiative forcing generated internal to the climate system.

[57] While some might object to the term “internal radiative
forcing,” it accurately describes both the origin and mecha-
nism of operation within the forcing-feedback construct of
climate variability. Any radiative variability that is not due to
feedback must be due to forcing. And the alternative term
“internal climate variability” does not distinguish between the
two different kinds of forcing of temperature change that
occur: radiative and nonradiative. The most likely mechanism
for this internal radiative forcing is nonfeedback fluctuations
in low clouds, although nonfeedback variations in water
vapor or high clouds might be a significant component of the
decorrelated portion of the LW variations.

[58] It has been demonstrated that radiative feedback in
response to unknown levels of time-varying radiative forcing
is, for all practical purposes, not observable. This is because
the feedback signal is mostly masked by the radiative forcing
itself. A simple forcing-feedback climate model, as well as
the IPCC AR4 coupled climate models, reveals that quasi-
random time-varying internal radiative forcing results in

spiral patterns in phase space plots of low-pass filtered tem-
perature and radiative flux variations, patterns which obscure
the signature of feedback. Feedback can only be clearly
observed in response to nonradiative forcing of temperature,
in which case linear striations appear having slopes approx-
imately equal to the feedbacks operating in the models. These
striations are believed to only appear during periods when
nonradiative forcing is relatively large at the same time that
any radiative forcing is relatively constant.

[59] Inthe AR4 coupled climate models, these striations are
obvious in only four models, and then only in the LW, not
SW, component. In these four models, the striations lie
roughly parallel to the long-term feedbacks previously
diagnosed from the models by Forster and Taylor [2006].
While supportive of our physical interpretation based upon
the simple model experiments, it is premature to claim that the
linear striations seen in this handful of AR4 models means
that the short-term and long-term feedbacks in the climate
system are substantially the same, especially since we could
find no obvious linear striations in the SW variations in the
AR4 models. The general lack of these feedback signatures in
the AR4 models could be due to the relatively weak levels of
intraseasonal fluctuations in moist convective activity, for
instance the Madden-Julian oscillation [Lin et al., 2006], in
the coupled climate models.

[60] Striations in 9 years of global average CERES radia-
tive fluxes from the Terra satellite have a slope around 6 W
m 2 K" in net (LW + SW) radiative flux variability. This is
similar to the feedbacks diagnosed by Lindzen and Choi
[2009] from interannual variability in recently recalibrated
Earth Radiation Budget Satellite data, as well as that diag-
nosed for a composite of 15 strong tropical intraseasonal
oscillations analyzed by Spencer et al. [2007]. Although these
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feedback parameter estimates are all similar in magnitude,
even if they do represent feedback operating on intraseasonal
to interannual time scales, it is not obvious how they relate to
long-term climate sensitivity.

[61] Further complicating the diagnosis of feedback from
satellite data is the different relationship that radiative flux
variations have to surface temperature versus tropospheric
temperature on short (intraseasonal) time scales. During
nonradiatively forced temperature fluctuations, the signature
of feedback is most clearly revealed in response to tropo-
spheric, rather than surface, temperature. Since feedback is
traditionally referenced to surface temperature, extra caution
must therefore be taken in the physical interpretation of any
regression relationships that TOA radiative fluxes have to
surface temperature variations.

[62] It also underscores a practical limitation that, since the
climate system is never in equilibrium, feedbacks in the cli-
mate system cannot be diagnosed from differences between
equilibrium climate states. Time-varying radiative and non-
radiative forcings are continually occurring, and so radiative
feedback parameters will need to be diagnosed in the pres-
ence of some level of time-varying radiative forcing, which
we have seen usually leads to large errors.

[63] It is clear that the accurate diagnosis of short-term
feedbacks (let alone long-term climate sensitivity) from
observations of natural fluctuations in the climate system is
far from a solved problem. As we have seen, the presence
of nonfeedback, internally generated radiative forcing con-
founds the identification of radiative feedback. Nevertheless,
it is hoped that the insights provided here, all explained within
the forcing-feedback paradigm of climate variability, will
lead to new and more accurate methods of feedback and
climate sensitivity diagnosis from satellite observations, as
well as better metrics for the testing the climate sensitivity of
coupled climate models.
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