On the Diagnosis of Radiative Feedback in the Presence of Unknown Radiative Forcing -or -

Connecting the Dots:
Theoretical & Observational Evidence for
Negative Cloud Feedbacks

Roy W. Spencer
William D. Braswell
The University of Alabama in Huntsville

16 December 2009 AGU Meeting San Francisco, CA

Radiative Flux vs. Temp. variations often show <u>Strong Decorrelation...</u>

WHAT AFFECTS THE REGRESSION

Tropospheric T Anomaly (deg. C)

SLOPE BESIDES FEEDBACK? 1.5 Monthly Global
Terra Satellite
CERES ES-4 LW+SW
vs UAH MT (Aqua AMSU) 1.0 0.5 $(W m^{-2})$ 0.0 -0.5 slope Radiative (Mar. 2000 - Dec. 2008) = 2.5 Wm⁻²K⁻¹ -1.0 = 0.22-1.5 -2.0 -0.4-0.2 0.0 0.2 0.4

...but PHASE SPACE plotting reveals <u>linear</u> striations with a common slope ~6 Wm⁻²K⁻¹

CONNECTING
THE DOTS:
ARE LINEAR
STRIATIONS
FEEDBACK?

Tropospheric T Anomaly (deg. C)

...& low-pass filtering reveals Looping Patterns...

& older ERBS data shows similar looping pattern after 1991 Pinatubo eruption.

Linear Patterns in Four IPCC AR4 Models (obvious in LW only)

Looping Patterns Seen in ALL 18 Models (especially in SW)

CNRM CM3 Model, SW

Linear & Looping Features Easily Explained with a Simple Model of Climate Variability:

(Spencer & Braswell, 2008 J. Climate [thanks to Isaac Held, pers. comm.])

Bulk heat CERES MEASURES ALL RADIATIVE SOURCES Capacity (mixed (NOT just feedback) layer depth) **INTERNAL EXTERNAL INTERNAL FEEDBACK** NON-RADIATIVE RADIATIVE FORCINGS RADIATIVE on T chg. **FORCINGS** (anthro.; volcanoes; solar) **FORCINGS** (vars. in ocean => (non-FB variations atmos. convective heat flux; in clouds, mostly) variations in ocean upwelling)

SIMPLE MODEL: Clouds => Temperature (N term) causes LOOPING PATTERNS...

SIMPLE MODEL: Temperature => Clouds (S term) causes LINEAR STRIATIONS.

Most Realistic: BOTH Forcings Combined (internal radiative forcing + non-rad. forcing)

So, How Can We Better Extract Feedback "Signal" when it is Mixed in with Internal Radiative "Noise"?

- No single best method
- My current favorite:
 Compute month-to-month slopes (e.g.
 Δ[LW+SW] / ΔT) for LARGEST ΔT's & then average together ("Local Slopes Analysis")

Local Slopes Analysis: CMIP Models vs. Satellite, evidence of neg. cloud feedback in satellite data?

Implications for Satellite Diagnosis of Feedbacks

- Feedback diagnosis MUST account for "internal radiative forcing" (which decorrelates data)
 - Feedback can NOT be measured when it's from timevarying radiative forcing of any kind (UNLESS known accurately and removed, e.g. CO2 forcing in a model)
- IGNORING internal radiative forcing leads to Feedback Parameter diagnosis errors which are variable and (usually) biased low
 - Spencer & Braswell 2008 J Climate
- Conceptually, this is a "cause vs. effect" issue:
 CLOUDS <==> TEMPERATURE
 - Previous feedback diagnoses have ignored the effect of causation in one direction: (clouds => temperature)

Backup Slides

WHY TROPOSPHERIC
TEMPERATURE
RATHER THAN
SURFACE
TEMPERATURE?

At ~1 month time resolution, Radiative Flux Anomalies (Aqua CERES LW+SW) are more closely correlated with **Tropospheric Temperature (AMSU5)** than with Sea Surface Temperature (AMSR-E)

IPCC CMIP Model Behavior vs. Satellite: evidence of negative cloud feedback?

